Some Remarks on Categories of Modules modulo Morphisms with Essential Kernel or Superfluous Image
نویسندگان
چکیده
For an ideal I of a preadditive category A, we study when the canonical functor C : A → A/I is local. We prove that there exists a largest full subcategory C of A for which the canonical functor C : C → C/I is local. Under this condition, the functor C turns out to be a weak equivalence between C and C/I. If A is additive (with splitting idempotents), then C is additive (with splitting idempotents). The category C is ample in several cases, such as the case when A = Mod-R and I is the ideal ∆ of all morphisms with essential kernel. In this case, the category C contains, for instance, the full subcategory F of Mod-R whose objects are all the continuous modules. The advantage in passing from the category F to the category F/I lies in the fact that, although the two categories F and F/I are weakly equivalent, every endomorphism has a kernel and a cokernel in F/∆, which is not true in F . In the final section, we extend our theory from the case of one ideal I to the case of n ideals I1, . . . , In.
منابع مشابه
The category of generalized crossed modules
In the definition of a crossed module $(T,G,rho)$, the actions of the group $T$ and $G$ on themselves are given by conjugation. In this paper, we consider these actions to be arbitrary and thus generalize the concept of ordinary crossed module. Therefore, we get the category ${bf GCM}$, of all generalized crossed modules and generalized crossed module morphisms between them, and investigate som...
متن کاملOn exact category of $(m, n)$-ary hypermodules
We introduce and study category of $(m, n)$-ary hypermodules as a generalization of the category of $(m, n)$-modules as well as the category of classical modules. Also, we study various kinds of morphisms. Especially, we characterize monomorphisms and epimorphisms in this category. We will proceed to study the fundamental relation on $(m, n)$-hypermodules, as an important tool in the study of a...
متن کاملSOME REMARKS ON ALMOST UNISERIAL RINGS AND MODULES
In this paper we study almost uniserial rings and modules. An R−module M is called almost uniserial if any two nonisomorphic submodules are linearly ordered by inclusion. A ring R is an almost left uniserial ring if R_R is almost uniserial. We give some necessary and sufficient condition for an Artinian ring to be almost left uniserial.
متن کاملFuzzy projective modules and tensor products in fuzzy module categories
Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...
متن کاملAn Existence Results on Positive Solutions for a Remarks on k-Torsionless Modules
Let R be a commutative Noetherian ring. The k-torsionless modules are defined in [7] as a generalization of torsionless and reflexive modules, i.e., torsionless modules are 1-torsionless and reflexive modules are 2-torsionless. Some properties of torsionless, reflexive, and k-torsionless modules are investigated in this paper. It is proved that if M is an R-module such that G-dimR(M)
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013